M317 Assignment \#5 due Friday

For each of the following limits, use the definition of function limit to find an L such that $\lim _{x \rightarrow c} f(x)=L$ and prove it (i.e., find $\delta(\varepsilon)$ or $B(\varepsilon)$)

1. $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}+2 x-8}$
2. $\lim _{x \rightarrow 1} \frac{x}{x+1}$
3. $\lim _{x \rightarrow 0} \frac{1-\operatorname{Cos}(x)}{x}$
4. $\lim _{x \rightarrow \infty} \frac{\operatorname{Cos}(x)}{x^{2}}$
5. $\lim _{x \rightarrow \infty} \frac{x}{1+x^{2}}$

Use the sequential definition of function limit to show the following limits fail to exist
6. $\lim _{x \rightarrow 0} \operatorname{Cos}\left(\frac{1}{x}\right)$
7. $\lim _{x \rightarrow 0} f(x)$ where $f(x)= \begin{cases}2 & \text { if } x>2 \\ -2 & \text { if } x<2\end{cases}$

